Synergistic protection against hyperoxia-induced lung injury by neutrophils blockade and EC-SOD overexpression

نویسندگان

  • Jae H Min
  • Champa N Codipilly
  • Sonya Nasim
  • Edmund J Miller
  • Mohamed N Ahmed
چکیده

BACKGROUND Oxygen may damage the lung directly via generation of reactive oxygen species (ROS) or indirectly via the recruitment of inflammatory cells, especially neutrophils. Overexpression of extracellular superoxide dismutase (EC-SOD) has been shown to protect the lung against hyperoxia in the newborn mouse model. The CXC-chemokine receptor antagonist (Antileukinate) successfully inhibits neutrophil influx into the lung following a variety of pulmonary insults. In this study, we tested the hypothesis that the combined strategy of overexpression of EC-SOD and inhibiting neutrophil influx would reduce the inflammatory response and oxidative stress in the lung after acute hyperoxic exposure more efficiently than either single intervention. METHODS Neonate transgenic (Tg) (with an extra copy of hEC-SOD) and wild type (WT) were exposed to acute hyperoxia (95% FiO2 for 7 days) and compared to matched room air groups. Inflammatory markers (myeloperoxidase, albumin, number of inflammatory cells), oxidative markers (8-isoprostane, ratio of reduced/oxidized glutathione), and histopathology were examined in groups exposed to room air or hyperoxia. During the exposure, some mice received a daily intraperitoneal injection of Antileukinate. RESULTS Antileukinate-treated Tg mice had significantly decreased pulmonary inflammation and oxidative stress compared to Antileukinate-treated WT mice (p < 0.05) or Antileukinate-non-treated Tg mice (p < 0.05). CONCLUSION Combined strategy of EC-SOD and neutrophil influx blockade may have a therapeutic benefit in protecting the lung against acute hyperoxic injury.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extracellular superoxide dismutase in the airways of transgenic mice reduces inflammation and attenuates lung toxicity following hyperoxia.

Extracellular superoxide dismutase (EC-SOD, or SOD3) is the major extracellular antioxidant enzyme in the lung. To study the biologic role of EC-SOD in hyperoxic-induced pulmonary disease, we created transgenic (Tg) mice that specifically target overexpression of human EC-SOD (hEC-SOD) to alveolar type II and nonciliated bronchial epithelial cells. Mice heterozygous for the hEC-SOD transgene sh...

متن کامل

Aerosolized Human Extracellular Superoxide Dismutase Prevents Hyperoxia-Induced Lung Injury

An important issue in critical care medicine is the identification of ways to protect the lungs from oxygen toxicity and reduce systemic oxidative stress in conditions requiring mechanical ventilation and high levels of oxygen. One way to prevent oxygen toxicity is to augment antioxidant enzyme activity in the respiratory system. The current study investigated the ability of aerosolized extrace...

متن کامل

Depletion of pulmonary EC-SOD after exposure to hyperoxia.

Extracellular superoxide dismutase (EC-SOD) is highly expressed in lung tissue. EC-SOD contains a heparin-binding domain that is sensitive to proteolysis. This heparin-binding domain is important in allowing EC-SOD to exist in relatively high concentrations in specific regions of the extracellular matrix and on cell surfaces. EC-SOD has been shown to protect the lung against hyperoxia in transg...

متن کامل

Neonatal hyperoxia alters the host response to influenza A virus infection in adult mice through multiple pathways.

Exposing preterm infants or newborn mice to high concentrations of oxygen disrupts lung development and alters the response to respiratory viral infections later in life. Superoxide dismutase (SOD) has been separately shown to mitigate hyperoxia-mediated changes in lung development and attenuate virus-mediated lung inflammation. However, its potential to protect adult mice exposed to hyperoxia ...

متن کامل

Overexpression of Stat3C in pulmonary epithelium protects against hyperoxic lung injury.

Acute lung injury is a side effect of therapy with a high concentration of inspired oxygen in patients. The molecular mechanism underlining this effect is poorly understood. In this study, we report that overexpression of Stat3C, a constitutive active form of STAT3, in respiratory epithelial cells of a doxycycline-controlled double-transgenic mouse system protects lung from inflammation and inj...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2012